WSNF8327B122
EF8320G186 220/50 EF8320G203 24VDC EF8320G203V 24VDC EF8314G054 24VDC 8344G072 24VDC 52100001 24VDC 52000001 24VDC 52100008 230/50 52000008 230/50 工作原理 电磁阀里有密闭的腔,在不同位置开有通孔,每个孔连接不同的油管,腔中间是活塞,两面是两块电磁铁,哪面的磁铁线圈通电阀体就会被吸引到哪边,通过控制阀体的移动来开启或关闭不同的排油孔,而进油孔是常开的,液压油就会进入不同的排油管,然后通过油的压力来推动油缸的活塞,活塞又带动活塞杆,活塞杆带动机械装置。这样通过控制电磁铁的电流通断就控制了机械运动。 52100004 230/50 52000004 24VDC 52000005 24VDC 52100005 24VDC 52000380 /50 18900001 24VDC 54191023 54292023 35500335 35500333 35500341 43004869 电磁阀(Electromagnetic valve)是用电磁控制的工业设备,是用来控制流体的自动化基础元件,属于执行器,并不限于液压、气动。用在工业控制系统中调整介质的方向、流量、速度和其他的参数。电磁阀可以配合不同的电路来实现预期的控制,而控制的精度和灵活性都能够保证。电磁阀有很多种,不同的电磁阀在控制系统的不同位置发挥作用,*常用的是单向阀、安全阀、方向控制阀、速度调节阀等。 43004886 35500347 10700001X TPL:24029的线圈43005413 24VDC 238610-058-D 220/50 EF8210G004 24VDC 099257-006-D 238710-006-D 24VDC 238610-158-D EF8262G22 24VDC 8320G172MO 220/50 JKH8344G74MO 110/50 EFHC8210C013 125VDC 238常用型号 SCE238D002 SCE238D004 SCE238D005 238先导式 黄铜阀体 型号全 常闭 SCE238D001 SCE238D006 SCE238D002 SCE238D007 SCE238D003 SCE238D008 SCE238D004 SCE238D009 SCE238D005 SCE238D010 SCG238D016 SCG238D017 SCG238D018 力士乐液压飞轮系统 此外,由内部原理图,我们可以看到,发动机内部有两个主要的系统在工作,一个是液压工作装置,主要改变发动机的负载,另一个是HFW(液压飞轮),它也可以和液压工作装置一样改变负载,但同时也可以提供驱动转矩。 所以摆在我们面前的挑战是如何用这种方法控制液压飞轮。一方面,当发动机工作在低负载时,富余的功率传递到液压工作装置。发动机再次对HFW(液压飞轮)充电,因此富余的能量以液压能形式储存在内部,而在另一方面,当发动机工作在高负载情况下时,例如当发动机的工作功率达到峰值,这是由HFW(液压飞轮)提供能量,那么这个时候液压飞轮将会输出发动机所需要的能量,并且可以连续的很好保持在理想状态下。 在常规的发动机设计经验中,我们不难发现,额定转矩通常是基于能够解决图中虚线所描绘的功率峰值来选择和设定,但如果使用HFW(液压飞轮)系统就可以消除这些性能峰值的影响,那么这样的话,选择一个更小的额定扭矩就足够了,这样就使得在满足需要的前提减小发动机的型号(瘦身)成为了可能。如果功率电源能够滤波,那么HFW能够交替使用的重要性就居次了,因此这个助力功能优势就意味着使用相同型号的发动机能够得到刚全面的功率需求。 另外,除了“瘦身”和助力功能外,HFW也使实现能量回收成为了可能。和传统发动机不同的是,液压飞轮打破了闭环回路,甚至整车假定的齿轮(可译成“传动装置”)负载,制动能量通过填充蓄能器转化为液压能,动力不足的减压蓄能器被清空,此时轴向柱塞单元发挥着马达和协助发动机的作用,油路顺着轴向柱塞单元流动,液压能重新转化为机械能。
其他推荐产品
首页| 关于我们| 联系我们| 友情链接| 广告服务| 会员服务| 付款方式| 意见反馈| 法律声明| 服务条款
WSNF8327B122
EF8320G186 220/50
EF8320G203 24VDC
EF8320G203V 24VDC
EF8314G054 24VDC
8344G072 24VDC
52100001 24VDC
52000001 24VDC
52100008 230/50
52000008 230/50
工作原理 电磁阀里有密闭的腔,在不同位置开有通孔,每个孔连接不同的油管,腔中间是活塞,两面是两块电磁铁,哪面的磁铁线圈通电阀体就会被吸引到哪边,通过控制阀体的移动来开启或关闭不同的排油孔,而进油孔是常开的,液压油就会进入不同的排油管,然后通过油的压力来推动油缸的活塞,活塞又带动活塞杆,活塞杆带动机械装置。这样通过控制电磁铁的电流通断就控制了机械运动。
52100004 230/50
52000004 24VDC
52000005 24VDC
52100005 24VDC
52000380
/50
18900001 24VDC
54191023
54292023
35500335
35500333
35500341
43004869
电磁阀(Electromagnetic valve)是用电磁控制的工业设备,是用来控制流体的自动化基础元件,属于执行器,并不限于液压、气动。用在工业控制系统中调整介质的方向、流量、速度和其他的参数。电磁阀可以配合不同的电路来实现预期的控制,而控制的精度和灵活性都能够保证。电磁阀有很多种,不同的电磁阀在控制系统的不同位置发挥作用,*常用的是单向阀、安全阀、方向控制阀、速度调节阀等。
43004886
35500347
10700001X TPL:24029的线圈43005413 24VDC
238610-058-D 220/50
EF8210G004 24VDC
099257-006-D
238710-006-D 24VDC
238610-158-D
EF8262G22 24VDC
8320G172MO 220/50
JKH8344G74MO 110/50
EFHC8210C013 125VDC
238常用型号
SCE238D002
SCE238D004
SCE238D005
238先导式 黄铜阀体 型号全
常闭
SCE238D001
SCE238D006
SCE238D002
SCE238D007
SCE238D003
SCE238D008
SCE238D004
SCE238D009
SCE238D005
SCE238D010
SCG238D016
SCG238D017
SCG238D018
力士乐液压飞轮系统
此外,由内部原理图,我们可以看到,发动机内部有两个主要的系统在工作,一个是液压工作装置,主要改变发动机的负载,另一个是HFW(液压飞轮),它也可以和液压工作装置一样改变负载,但同时也可以提供驱动转矩。
所以摆在我们面前的挑战是如何用这种方法控制液压飞轮。一方面,当发动机工作在低负载时,富余的功率传递到液压工作装置。发动机再次对HFW(液压飞轮)充电,因此富余的能量以液压能形式储存在内部,而在另一方面,当发动机工作在高负载情况下时,例如当发动机的工作功率达到峰值,这是由HFW(液压飞轮)提供能量,那么这个时候液压飞轮将会输出发动机所需要的能量,并且可以连续的很好保持在理想状态下。
在常规的发动机设计经验中,我们不难发现,额定转矩通常是基于能够解决图中虚线所描绘的功率峰值来选择和设定,但如果使用HFW(液压飞轮)系统就可以消除这些性能峰值的影响,那么这样的话,选择一个更小的额定扭矩就足够了,这样就使得在满足需要的前提减小发动机的型号(瘦身)成为了可能。如果功率电源能够滤波,那么HFW能够交替使用的重要性就居次了,因此这个助力功能优势就意味着使用相同型号的发动机能够得到刚全面的功率需求。
另外,除了“瘦身”和助力功能外,HFW也使实现能量回收成为了可能。和传统发动机不同的是,液压飞轮打破了闭环回路,甚至整车假定的齿轮(可译成“传动装置”)负载,制动能量通过填充蓄能器转化为液压能,动力不足的减压蓄能器被清空,此时轴向柱塞单元发挥着马达和协助发动机的作用,油路顺着轴向柱塞单元流动,液压能重新转化为机械能。
WSNF8327B122